Abstract

The near-zero modes of the Dirac operator are connected to spontaneous breaking of chiral symmetry in QCD (SBCS) via the Banks–Casher relation. At the same time, the distribution of the near-zero modes is well described by the Random Matrix Theory (RMT) with the Gaussian Unitary Ensemble (GUE). Then, it has become a standard lore that a randomness, as observed through distributions of the near-zero modes of the Dirac operator, is a consequence of SBCS. The higher-lying modes of the Dirac operator are not affected by SBCS and are sensitive to confinement physics and related [Formula: see text] and [Formula: see text] symmetries. We study the distribution of the near-zero and higher-lying eigenmodes of the overlap Dirac operator within [Formula: see text] dynamical simulations. We find that both the distributions of the near-zero and higher-lying modes are perfectly described by GUE of RMT. This means that randomness, while consistent with SBCS, is not a consequence of SBCS and is linked to the confining chromo-electric field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call