Abstract
The distortion of structure of a simple, inverse 12 soft-sphere fluid undergoing plane Couette flow is studied by nonequilibrium molecular dynamics (NEMD) and equilibrium molecular dynamics (EMD) with a high-shear-rate version of the nonequilibrium (NE) potential obtained recently from the NE distribution function theory of Gan and Eu [Phys. Rev. A 45, 3670; 46, 6344 (1992)]. The theory suggests a NE potential under which the equilibrium structure of the fluid is that of a NE fluid, and also suggests a corresponding Ornstein-Zernike equation with its closure relations. As in the low-shear-rate case [Yu. V. Kalyuzhnyi, S. T. Cui, P. T. Cummings, and H. D. Cochran, Phys. Rev. E 60, 1716 (1999)] the agreement between EMD and the modified hypernetted chain version of the theory is good. Although the high-shear-rate version of the NE potential improves the agreement between NEMD and EMD results (in comparison with the low-shear-rate version), its predictions are still unsatisfactory. With the high-shear-rate NE potential, EMD gives qualitatively correct predictions only for the shift of the position of the first maximum of the NE distribution function. The corresponding changes in the magnitude of the first maximum predicted by EMD have an opposite direction in comparison with those predicted by NEMD. It is concluded that the NE potential used is not very successful, and more accurate models for the potential are needed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.