Abstract
The problem of distribution function (df) estimation arises naturally in many contexts. The empirical and the kernel df estimators are well known. There is another df estimator based on a Bernstein polynomial of degree m. For a Bernstein df estimator, plays the same role as the bandwidth in a kernel estimator. The asymptotic properties of the Bernstein estimator has been studied so far assuming m is non random, chosen subjectively. We propose algorithms for data driven choice of m. Such an m is a function of the data, i.e. random. We obtain the convergence rates of a Bernstein df estimator, using a random m, for i.i.d., strongly mixing and a broad class of linear processes. The estimator is shown to be consistent for any stationary, ergodic process satisfying some conditions. Using simulations and analysis of real data the finite sample performance of the different df estimators are compared.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.