Abstract

This paper proposes a semiparametric estimator for spatial autoregressive (SAR) binary choice models in the context of panel data with fixed effects. The estimation procedure is based on the observational equivalence between distribution free models with a conditional median restriction and parametric models (such as Logit/Probit) exhibiting (multiplicative) heteroskedasticity and autocorrelation. Without imposing any parametric structure on the error terms, we consider the semiparametric nonlinear least squares (NLLS) estimator for this model and analyze its asymptotic properties under spatial near-epoch dependence. The main advantage of our method over the existing estimators is that it consistently estimates choice probabilities. The finite-dimensional estimator is shown to be consistent and root-n asymptotically normal under some reasonable conditions. Finally, a Monte Carlo study indicates that the estimator performs quite well in finite samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.