Abstract
Although thallium (Tl) is a highly toxic element, little information is available on the environmental risks of Tl in agricultural soils with intensive practices, particularly nearby mining sites. Therefore, we investigated the potential release of Tl in acidic soils with intensive cultivation nearby a waste copper mining site from southern China based on its level and chemical fractions as well as simulated release under artificial acid rain. Results showed that the average Tl content was 1.31mg/kg in the studied area, which significantly exceeds the permissible thallium value of 1mg/kg for agricultural soil in China. Some vertical increases of soil Tl from different land uses indicate the potential transport of Tl downward to groundwater. High positive correlations between surficial soil Tl and rubidium (Rb) and copper (Cu) indicated that Tl has the lithophile and chalcophile behavior. Tl in soils is mainly entrapped in residual fraction. The exchangeable fraction of Tl in agricultural soils was less than undisturbed natural soils and copper mined soils. Additionally, the percentage of Tl release from undisturbed natural soils and soils of copper ore area was more than that from agricultural soils in simulated acid rain. Furthermore, the releases of Tl from the soils increased with the acidity of artificial acid rain. Thus, more attention must be paid to land management of this similar area to avoid the risk of Tl impact on human health.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.