Abstract

This article is the first of a two-part series that develops and experimentally demonstrates a first-of-its-kind hierarchical control solution for optimally dispatching thousands of deferrable loads and distributed energy resources (DERs) across a distribution feeder to provide fast frequency response (FFR) within 500 ms to the bulk power system. This approach rapidly coordinates resources online after a frequency event occurs, allowing fast-changing, behind-the-meter (BTM) resources to be incorporated and aggregate FFR power set points to be achieved more quickly and accurately than existing approaches. We also present a solution for determining the optimal amount of headroom to operate solar inverters with to minimize opportunity cost while ensuring the FFR response viability of a building with the inverter and deferrable loads. In Part I, we develop practical algorithms for fast, cost-based optimal dispatch at multiple aggregation scales (single building, multiple buildings, and full distribution feeder), establish their optimality, and demonstrate via simulation that they are faster than state-of-the-art, coordinated frequency response approaches. In Part II, the entire platform is implemented and experimentally verified using a unique power hardware-in-the-loop demonstration, including more than 100 powered loads and DERs connected to a real-world distribution network model and over 10,000 net-load resources dispatched.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call