Abstract

Simple SummaryCacyreus marshalli is strictly dependent on its host plant (Pelargonium spp.), which is widely cultivated as an ornamental plant in mountain areas. An experiment demonstrated that the butterfly is able to develop on some wild geraniums, too, making mountain areas highly at risk for a potential expansion to natural habitats. We therefore decided to carry out research in a protected mountain area (Gran Paradiso National Park), focusing on the drivers which determine the distribution of C. marshalli using data provided by either an opportunistic approach or a rigorous survey protocol. The data collected via the planned survey were more informative than the opportunistic observations, which were few and narrow. We suggest investing more in citizen science projects and combining them with a designed protocol according to an integrated approach. We observed that C. marshalli distribution is strictly linked to host plant availability but is constrained by cold temperatures, although Pelargonium spp. are abundant. The temperature increase scenario showed an increase of butterfly abundance, but halving of the host plant population could drive the rate of infestation to return to what it was previously, excluding a countertrend in some high-altitude sites. It is therefore important to test management actions designed to control alien species before implementing them.Cacyreus marshalli is the only alien butterfly in Europe. It has recently spread in the Gran Paradiso National Park (GPNP), where it could potentially compete with native geranium-consuming butterflies. Our study aimed to (1) assess the main drivers of its distribution, (2) evaluate the potential species distribution in GPNP and (3) predict different scenarios to understand the impact of climate warming and the effect of possible mitigations. Considering different sampling designs (opportunistic and standardised) and different statistical approaches (MaxEnt and N-mixture models), we built up models predicting habitat suitability and egg abundance for the alien species, testing covariates as bioclimatic variables, food plant (Pelargonium spp.) distribution and land cover. A standardised approach resulted in more informative data collection due to the survey design adopted. Opportunistic data could be potentially informative but a major investment in citizen science projects would be needed. Both approaches showed that C. marshalli is associated with its host plant distribution and therefore confined in urban areas. Its expansion is controlled by cold temperatures which, even if the host plant is abundant, constrain the number of eggs. Rising temperatures could lead to an increase in the number of eggs laid, but the halving of Pelargonium spp. populations would mostly mitigate the trend, with a slight countertrend at high elevations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call