Abstract

Sediment is the main storage medium of antibiotics in a water environment, and a growing body of research has focused on the distribution behavior of antibiotics in water-sediment. However, most of the previous studies were based on laboratory simulation, and less attention was paid to the distribution behavior of antibiotics in a natural water environment and its correlation with environmental factors. Thus, the surface water and sediment in Shijiazhuang were taken as the research object for this study. The temporal and spatial distribution characteristics of quinolone (QNs) antibiotics in Shijiazhuang water were analyzed by using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS), calculating the distribution coefficients of quinolone (QNs) antibiotics in water and sediment, and confirming the main environmental factors influencing the distribution coefficient in natural water. The results showed that:① the content of ΣQNs in water and sediment ranged from 8.0 to 4.4×103 ng·L-1 and 16 to 2.2×103 ng·g-1 in Shijiazhuang water, whereas the primary QNs in water and sediment were enrofloxacin (ENR) and ofloxacin (OFL), respectively. ② The total concentrations of ΣQNs in Shijiazhuang water showed a tendency of being higher in December (1.0×104 ng·L-1) than in April (5.5×103 ng·L-1), and QNs in sediment were also higher in December (7.8×103 ng·g-1) than in April (6.2×103 ng·g-1). ③ The distribution coefficient of QNs in Shijiazhuang water varied from 34 to 2.9×105 L·kg-1 and showed a trend of being greater in December than in April. ④ The results of correlation analysis showed that total nitrogen (TN), nitrate nitrogen (NO3--N), nitrite nitrogen (NO2--N), and ammonia nitrogen (NH4+-N) were significantly correlated with most distribution coefficients of QNs[OFL, norfloxacin (NOR), ENR, difloxacin (DIF), and oxolinic acid (OXO)], whereas temperature (T), total organic carbon (TOC), and total dissolved solids (TDS) were significantly correlated with individual distribution coefficients of QNs[marbofloxacin (MAR) and DIF]. Therefore, the eutrophication level of water affects the distribution behavior of antibiotics in water-sediment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call