Abstract

This study focuses on the reduction of phosphorus from high-phosphorus-content oolitic iron ore via coal-based reduction. The distribution behavior of phosphorus (i.e., the phosphorus content and the phosphorus distribution ratio in the metal, slag, and gas phases) during reduction was investigated in detail. Experimental results showed that the distribution behavior of phosphorus was strongly influenced by the reduction temperature, the reduction time, and the C/O molar ratio. A higher temperature and a longer reaction time were more favorable for phosphorus reduction and enrichment in the metal phase. An increase in the C/O ratio improved phosphorus reduction but also hindered the mass transfer of the reduced phosphorus when the C/O ratio exceeded 2.0. According to scanning electron microscopy analysis, the iron ore was transformed from an integral structure to metal and slag fractions during the reduction process. Apatite in the ore was reduced to P, and the reduced P was mainly enriched in the metal phase. These results suggest that the proposed method may enable utilization of high-phosphorus-content oolitic iron ore resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.