Abstract

Analysis of data containing a vast number of features, but only a limited number of informative ones, requires methods that can separate true signal from noise variables. One class of methods attempting this is the sparse partial least squares methods for regression (sparse PLS). This paper aims at improving the theoretical foundation, speed and robustness of such methods. A general justification of truncation of PLS loading weights is achieved through distribution theory and the central limit theorem. We also introduce a quick plug-in based truncation procedure based on a novel application of theory intended for analysis of variance for experiments without replicates. The result is a versatile and intuitive method that performs component-wise variable selection very efficiently and in a less ad hoc manner than existing methods. Prediction performance is on par with existing methods, while robustness is ensured through a better theoretical foundation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.