Abstract

Histopathology is a crucial diagnostic tool in cancer and involves the analysis of gigapixel slides. Multiple instance learning (MIL) promises success in digital histopathology thanks to its ability to handle gigapixel slides and work with weak labels. MIL is a machine learning paradigm that learns the mapping between bags of instances and bag labels. It represents a slide as a bag of patches and uses the slide's weak label as the bag's label. This paper introduces distribution-based pooling filters that obtain a bag-level representation by estimating marginal distributions of instance features. We formally prove that the distribution-based pooling filters are more expressive than the classical point estimate-based counterparts, like 'max' and 'mean' pooling, in terms of the amount of information captured while obtaining bag-level representations. Moreover, we empirically show that models with distribution-based pooling filters perform equal to or better than those with point estimate-based pooling filters on distinct real-world MIL tasks defined on the CAMELYON16 lymph node metastases dataset. Our model with a distribution pooling filter achieves an area under the receiver operating characteristics curve value of 0.9325 (95% confidence interval: 0.8798 - 0.9743) in the tumor vs. normal slide classification task.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.