Abstract

Accurately quantifying the concentration and transport flux of atmospheric fine particulate matter (PM2.5) is vital when attempting to thoroughly identify the pollution formation mechanism. In this study, the mobile lidar measurements in Beijing on heavily polluted days in December from 2015 to 2018 are presented. The lidar was mounted on a vehicle, which could perform measurements along designated routes. On the basis of mobile lidar measurements along closed circuits of the 6th Ring Road around Beijing, the spatial distribution and transport flux of PM2.5 in Beijing were determined with information of wind field. In the spatial distribution, both the concentration and transport of PM2.5 were revealed to be more significant in the southern section of Beijing. The regional transport layer at heights < 1.3 km plays an important role in pollution formation. The maximum transport flux reached 1600 μg/(m2*sec) on 11 December 2016. With the aerosol boundary layer height determined from the image edge detection (IED) method, the inter-annual variations of the aerosol boundary layer height (ABLH) were also analysed. The ABLH decreased from 0.73 to 0.46 km during the same heavy pollution period from 2015 to 2018. Increasingly adverse aerosol boundary layer (ABL) meteorological factors, including lower ABLH, light winds, temperature inversions, and accumulated moisture, have become necessary for pollution formation in Beijing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call