Abstract

Understanding the phosphorus (P) cycle is essential for preventing soil P loss, improving environmental quality, and promoting sustainable agriculture, particularly in urban areas. In this study, a representative city of the lower Yangtze River Basin, Nanchang, was chosen to systematically explore the distribution and transformation of soil P forms, which were extracted by an improved SEDEX method and measured by a standard phosphorus–molybdenum blue method under three land use patterns. The contents of soil P forms were the highest in the dryland and the lowest in the paddy field, with total P accumulation in the upper wasteland and paddy field soils but in the lower dryland soil. The pH value and grain size affected soil P form distributions to a variable extent from one land use pattern to another. The transformation of soil P forms was weak in the wasteland. It was first found that some detrital limestone P (De-P) was transformed into exchangeable P (Ex-P) in the paddy field with authigenic calcium-bound phosphorus (Au-P) and organic phosphorus (OP) transformation, and the transformation between Ex-P and iron-bound phosphorus (Fe-P), Au-P, and between Au-P and OP existed in the dryland. Land use pattern was the dominant driver for the P distribution and transformation of soil P. This study highlights the critical role of land use patterns in affecting the P cycle of soils in urban areas and the importance of sustainable urban land management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.