Abstract

Coactivator proteins, such as steroid receptor coactivator-1 (SRC-1) greatly enhance gene expression by amplifying steroid-induced transcription regulated by receptors such as estrogen receptor. These proteins may also play a role in the development of sex differences in central nervous system as well the maintenance of the sexually dimorphic behaviors in adulthood. One well-studied sexually dimorphic behavior is singing in songbirds such as the Australian zebra finch ( Taeniopygia guttata). Song learning and production is controlled by the song control system, a collection of sexually dimorphic nuclei found in the avian telencephalon. While the actions of steroid hormones on song nuclei development has been under debate, steroids, such as testosterone, influence singing behavior in adulthood. We hypothesize that the differential expression of coactivators in male and female brains aid in organizing the song nuclei during development and function in adulthood to aid in activating the song control nuclei to induce singing behavior. The distribution of SRC-1-immunoreactive neurons was localized in the brains of male and female zebra finches on the day of hatch (P1) and in adults. In adults SRC-1 immunoreactive cells are found in the four main song control nuclei as well as other steroid sensitive brain regions. We found that SRC-1 is sexually dimorphic in the adult zebra finch telencephalon, suggesting that coactivators may play a role in the maintenance of sexually dimorphic behaviors including singing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call