Abstract

Anti-Müllerian hormone (AMH) is produced by granulosa cells in primary to small antral follicles of the adult ovary and helps maintain primordial follicles in a dormant state. The industrial chemical, 4-vinylcyclohexene diepoxide (VCD) causes specific ovotoxicity in primordial and small primary follicles of mice and rats. Previous studies suggest that this ovotoxicity involves acceleration of primordial to primary follicle recruitment via interactions with the Kit/Kit ligand signaling pathway. Because of its accepted role in inhibiting primordial follicle recruitment, the present study was designed to investigate a possible interaction between AMH and VCD-induced ovotoxicity. Protein distribution of AMH was compared in neonatal and adult F344 rat ovaries. AMH protein was visualized by immunofluorescence microscopy in large primary and secondary follicles of the adult ovary, but in small primary follicles in neonatal rat ovaries. In cultured postnatal day (PND) 4 F344 rat ovaries, VCD exposure (30 μM, 2–8 days) decreased ( P < 0.05) AMH mRNA (d4–8) and protein (d6–8). Recombinant AMH (100–400 mg/ml) in PND4 ovaries cultured 8 days ± VCD (30 μM) caused an increase ( P < 0.05) in primordial, and a decrease ( P < 0.05) in small primary follicles, supporting that AMH retarded primordial follicle recruitment. However, no concentration of AMH had an effect on VCD-induced ovotoxicity. Whereas, VCD caused a reduction in expression of AMH (d4–d8), it followed previously reported initial disruptions in Kit signaling induced by VCD (d2). Thus, collectively, these results do not support a mechanism whereby VCD causes ovotoxicity via generalized activation of primordial follicle recruitment, but instead provide further support for the specificity of other intracellular mechanisms involved in VCD-induced ovotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.