Abstract

PC1 and PC2 are enzymes involved in the activation of prohormones via the cleavage of pairs of basic amino acids. The expression levels of each of these enzymes were evaluated in the rat anterior and neurointermediate pituitary lobes by in situ hybridization and Northern gel analysis and after various pharmacological manipulations. All intermediate lobe melanotrophs expressed high levels of PC2 mRNA and lower levels of PC1 mRNA. PC1 mRNA was highly expressed throughout the anterior lobe; however, appreciable PC2 mRNA levels were also found. Based on colocalization studies, anterior lobe corticotrophs were found to express PC1 mRNA, but very little PC2 mRNA. Neurointermediate lobe levels of PC1, PC2, and POMC mRNA increased 2- to 6-fold in rats treated with haloperidol, while they decreased to 10-25% of their control values after bromocriptine treatment. These results indicate that in the intermediate lobe, dopamine is involved in the regulation of PC1 and PC2. In the anterior lobe, haloperidol had a strong effect on PC2 mRNA, increasing its levels by 8- to 12-fold compared to the control value, while PC1 mRNA was unaffected. Both PC1 and PC2 mRNA levels were increased 5- to 9-fold in animals made hypothyroid by treatment with 6-n-propyl-2-thiouracil. Adrenalectomy had no significant effect on anterior lobe PC1 mRNA levels. However, both PC1 and PC2 mRNA levels were responsive to dexamethasone treatment in the AtT-20 cell lines. Our results indicate that dopamine, thyroid hormones, and corticosteroids are involved in PC1 and/or PC2 gene expression. These data are also consistent with the role of PC1 and PC2 as prohormone-processing enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.