Abstract

Vascular plants exert significant effects on micro-environment, thereby affecting the distribution of biological soil crusts (biocrusts). The relationship between vascular plants and the spatial distribution characteristics of biocrusts is largely unknown. We investigated the distribution characteristics of biocrusts under the canopy of vascular plants in the water-wind erosion crisscross area of the Loess Plateau, where larger areas of biocrusts had been formed since the implantation of "Grain for Green" project. We analyzed the relationship between the canopy characteristics of different vascular plants and the spatial distribution of biocrusts using correlation analysis and random forest importance ranking methods, and further constructed a predictive model for the area of biocrusts under the canopy of vascular plants. The results showed that: 1) Cyanobacteria crust was the predominant biocrusts, followed by moss crust. 2) The canopy of vascular plants affected the spatial distribution of biocrusts, with notable differences in distribution pattern across different directions under the canopy of vascular plants. Biocrusts were primarily distributed in the 270°-315° and 315°-360° directions, while was less frequent in the 90°-135° and 135°-180° directions. 3) Radially, the coverage of biocrusts gradually increased from the root-base to the edge of the canopy of vascular plants. 4) The coverage of biocrusts under canopy was significantly related to the characteristics of vascular plants, including canopy area, long crown width, short crown width, litter area and plant height. 5) The relative importance of canopy area, long crown width, and short crown width to the biocrusts under the canopy was 13.7%, 12.1%, and 11.9%, respectively, while the relative importance of plant height and species type was relatively low, being 6.7% and 4.4%, respectively. 6) Results of the random forest model demonstrated strong predictive performance for biocrusts distribution based on canopy characteristics of vascular plants, with a prediction accuracy of 0.59 (R2) and a root mean square error of 1.2 m2. This model could be applied to predict and estimate the area of biocrusts under the canopy of vascular plants. This study provided a theoretical basis for in-depth understanding of the relationship between vascular plants and biocrusts in semi-arid climate regions, as well as for predicting the spatial distribution of biocrusts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.