Abstract

1. The inactivation of cytosol enzymes in liver extracts was carried out by several subcellular fractions, with plasma membranes having the highest specific activity. Rough and smooth microsomal fractions were both active, whereas lysosmal inactivation capacity appeared to be derived entirely from contaminating plasma-membrane fragments. 2. Inactivation capacity in liver fractions was derived from parenchymal cells. Of the non-liver cells tested, plasma membranes from H35 hepatoma cells were able to inactivate glucose 6-phosphate dehydrogenase (EC 1.1.1.49), adipocyte "ghosts" showed slight activity and erythrocyte and reticulocyte "ghosts" were inactive. 3. Liposomes prepared from pure lipids with net negative, positive or neutral charge did not possess inactivation capacity. 4. Liver plasma-membrane inactivation capacity was destroyed by heating at 50 degrees C. 5. Inactivation factor solubilized from membranes by trypsin plus Triton X-100 treatment was partially purified by (NH4)2SO4 fractionation, gel filtration, ion-exchange chromatography and hydroxyapatite chromatography. 6. Partially purified inactivation factor analysed by gel electrophoresis gave a major protein band that co-migrated with capacity for inactivation of glucose 6-phosphate dehydrogenase. 7. It is concluded that inactivation factor is a membrane protein whose intracellular distribution and other properties are consistent with a possible role for this activity in the initial step of protein degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call