Abstract

This study documents the stratigraphic and palaeogeographic distribution of hybrid event beds that comprise both debris-flow (cohesive) and turbidity current (non-cohesive) deposits. This is the first study of such beds in a submarine fan system to combine outcrop and research borehole control, and uses a dataset from the Skoorsteenberg Formation of the Tanqua depocentre in the Karoo Basin, South Africa. Three types of 0.1–1.0 m thick hybrid beds are observed, which have a basal weakly graded fine-grained sandstone turbidite division overlain by a division of variable composition that can comprise 1) poorly sorted carbonaceous-rich material supported by a mud-rich and micaceous sand-matrix; 2) poorly sorted mudstone clasts in a mud-rich sand-silt matrix; or 3) gravel-grade, rounded mudstone clasts in a well sorted (mud-poor) sandstone matrix. These upper divisions are interpreted respectively as: 1) the deposit of a debris-flow most likely derived from shelf-edge collapse; 2) the deposit of a debris flow, most likely developed through flow transformation from turbidity current that eroded a muddy substrate; and 3) from a turbidity current with mudstone clasts transported towards the rear of the flow. All three hybrid bed types are found concentrated at the fringes of lobes that were deposited during fan initiation and growth. The basinward stepping of successive lobes means that the hybrid beds are concentrated at the base of stratigraphic successions in medial and distal fan settings. Hybrid beds are absent in proximal fan positions, and rare and thin in landward-stepping lobes deposited during fan retreat. This distribution is interpreted to reflect the enhanced amounts of erosion and availability of mud along the transport route during early lowstands of sea level. Therefore, hybrid beds can be used to indicate a fan fringe setting, infer lobe stacking patterns, and have a sequence stratigraphic significance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.