Abstract

G-protein inwardly rectifying potassium (GIRK) channels mediate the synaptic actions of numerous neurotransmitters in the mammalian brain and play an important role in the regulation of neuronal excitability in most brain regions through activation of various G-protein-coupled receptors such as the serotonin 5-HT(1A) receptor. In this report we describe the localization of GIRK1, GIRK2, and GIRK3 subunits and 5-HT(1A) receptor in the rat brain, as assessed by immunohistochemistry and in situ hybridization. We also analyze the co-expression of GIRK subunits with the 5-HT(1A) receptor and cell markers of glutamatergic, gamma-aminobutyric acid (GABA)ergic, cholinergic, and serotonergic neurons in different brain areas by double-label in situ hybridization. The three GIRK subunits are widely distributed throughout the brain, with an overlapping expression in cerebral cortex, hippocampus, paraventricular nucleus, supraoptic nucleus, thalamic nuclei, pontine nuclei, and granular layer of the cerebellum. Double-labeling experiments show that GIRK subunits are present in most of the 5-HT(1A) receptor-expressing cells in hippocampus, cerebral cortex, septum, and dorsal raphe nucleus. Similarly, GIRK mRNA subunits are found in glutamatergic and GABAergic neurons in hippocampus, cerebral cortex, and thalamus, in cholinergic cells in the nucleus of vertical limb of the diagonal band, and in serotonergic cells in the dorsal raphe nucleus. These results provide a deeper knowledge of the distribution of GIRK channels in different cell subtypes in the rat brain and might help to elucidate their physiological roles and to evaluate their potential involvement in human diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.