Abstract

Many mycophagous species of Drosophila can tolerate the mushroom poison α-amanitin in wild mushrooms and in artificial diet. We conducted feeding assays with sixteen Drosophila species and α-amanitin in artificial diet to better determine the phylogenetic distribution of this tolerance. For eight tolerant and one related susceptible species, we sequenced the gene encoding the large subunit of RNA Polymerase II, which is the target site of α-amanitin. We found no differences in the gene that could account for differences in susceptibility to the toxin. We also conducted feeding assays in which α-amanitin was combined with chemical inhibitors of cytochrome P450s or glutathione S-transferases (GSTs) in artificial diet to determine if either of these enzyme families is involved in tolerance to α-amanitin. We found that an inhibitor of GSTs did not reduce tolerance to α-amanitin, but that an inhibitor of cytochrome P450s reduced tolerance in several species. It is possible that the same cytochrome P450 activity that produces tolerance of α-amanitin might produce tolerance of other mushroom toxins as well. If so, a general detoxification mechanism based on cytochrome P450s might answer the question of how tolerance to α-amanitin arose in mycophagous Drosophila when this toxin is found in relatively few mushrooms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.