Abstract

Bottom sediments collected in the Northwest (NW) Pacific Ocean in 1997 were analysed for 90Sr, 137Cs, 239, 240Pu and 241Am contents to determine their distribution patterns, inventories and sources. Enhanced inventories of 239,240Pu and 241Am were observed in the latitudinal belts of 10–20°N and 30–40°N, which correspond to major areas of local (tropospheric) and global (stratospheric) fallout (with a contribution from local fallout), respectively. The sediment inventory of 239,240Pu near the Bikini Atoll exceeded its overlying water inventory, however, in the mid-latitudes, more than 70% of 239,240Pu still remains in the water column. 241Am inventories in sediments exceeded that of the water column for the entire NW Pacific Ocean. Higher 137Cs and 90Sr sediment inventories in the latitudinal belt of 30–40°N are due to global fallout, and they account for about 10% and less than 5% of the water column inventories, respectively. The observed activity ratios of 137Cs/ 90Sr, 238Pu/ 239,240Pu and 241Am/ 239,240Pu in sediment were at some stations higher than the global fallout ratios due to contributions from local fallout and due to specific processes in the water column. Two end-member mixing model based on the 240Pu/ 239Pu atom ratios observed in global and local fallout yielded ∼60% contribution of the local fallout in the bottom sediments near the Bikini Atoll. The upward decrease in the 240Pu/ 239Pu atom ratios in the sediment column indicates a decrease in the contribution of local fallout to the Pu inventory with time. 241Am and 241Pu dating of sediment layers was utilized to explain a hiatus in sediment accumulation in the deep seafloor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call