Abstract

BackgroundThe controlled beating of cilia of the fallopian tube plays an important role in facilitating the meeting of gametes and subsequently transporting the fertilized egg to its implantation site. Rapid effects of progesterone on ciliary beat frequency have been reported in the fallopian tubes of cows, but the identity of the receptors mediating this non-genomic action of progesterone is not known. We recently identified a member of the non-genomic membrane progesterone receptor family, mPR gamma, as a candidate for mediating these actions of progesterone. Here, we investigated the possible presence of a related receptor, mPR beta, in the fallopian tubes of mice and women as well as the possible hormonal regulation of mPR beta and gamma.MethodsWestern blot and immunohistochemistry with specific antibodies were used to characterize the expression and cellular localization of the mPRs in mouse and human tissues. Taqman (Quantitative Polymerase Chain Reaction) assays were used to quantify mRNA levels in the fallopian tubes of two different mouse models after injections with different hormones and specific antagonists.ResultsIn the fallopian tubes of both mouse and human, the expression of mPR beta and mPR gamma proteins was exclusively found in the ciliated cells. Whereas mPR beta was found on the cilia, mPR gamma was localized at the base of the same ciliated cells, as previously reported. In gonadotropin-primed mice, both mPRs genes were down-regulated after an injection with progesterone. Treatment with estradiol rapidly down-regulated the level of mPR beta mRNA and protein in immature mice. The mPR gamma protein was down-regulated around the time of ovulation in cycling women, similar to the regulation observed in mice stimulated to ovulate via gonadotropin injections.ConclusionOur findings show the presence and hormonal regulation of two distinct mPRs associated with the cilia of the fallopian tubes in both mice and women. It is hypothesized that these receptors are involved in the control of ciliary movement and, thus, gamete transport in the fallopian tubes of mammals.

Highlights

  • The controlled beating of cilia of the fallopian tube plays an important role in facilitating the meeting of gametes and subsequently transporting the fertilized egg to its implantation site

  • We have previously shown that mPRγ is expressed at the apical cell membrane of ciliated cells in the mouse and human fallopian tube, leading us to hypothesize that mPRγ can be a mediator of rapid effects of P4 on ciliary activity in mammals [20]

  • The expression of mPRβ protein was confirmed by a single band of 40 kDa in female reproductive tissues

Read more

Summary

Introduction

The controlled beating of cilia of the fallopian tube plays an important role in facilitating the meeting of gametes and subsequently transporting the fertilized egg to its implantation site. Rapid effects of progesterone on ciliary beat frequency have been reported in the fallopian tubes of cows, but the identity of the receptors mediating this non-genomic action of progesterone is not known. Gamete transport in the fallopian tube is reported to depend on both smooth muscle contractility and the action of cilia [2]. Inhibition of muscle contractility by isoproterenol did not affect ovum transport in fallopian tube of rats [3], and much of the literature supports ciliary activity as the most important factor regulating gamete transport rate [4,5]. Understanding the underlying mechanism of E2 and P4 action in the regulation of tubal function is important

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.