Abstract

The mechanosensilla in spider exoskeleton are innervated by bipolar neurons with their cell bodies close to the cuticle and dendrites attached to it. Numerous efferent fibers synapse with peripheral parts of the mechanosensory neurons, with glial cells surrounding the neurons, and with each other. Most of these efferent fibers are immunoreactive to gamma-aminobutyric acid (GABA), and the sensory neurons respond to agonists of ionotropic GABA receptors with a rapid and complete inhibition. In contrast, little is known about metabotropic GABAB receptors that may mediate long-term effects. We investigated the distribution of GABAB receptors on spider leg mechanosensilla using specific antibodies against 2 proteins needed to form functional receptors and an antibody that labels the synaptic vesicles on presynaptic sites. Both anti-GABAB receptor antibodies labeled the distal parts of the sensory cell bodies and dendrites but anti-GABABR1 immunoreactivity was also found in the axons and proximal parts of the cell bodies and some glial cells. The fine efferent fibers that branch on top of the sensory neurons did not show GABAB receptor immunoreactivity but were densely labeled with anti-synapsin and indicated synaptic vesicles on presynaptic locations to the GABAB receptors. Intracellular recordings from sensory neurons innervating the slit sensilla of the spider legs revealed that application of GABAB receptor agonists attenuated voltage-activated Ca2+ current and enhanced voltage-activated outward K+ current, providing 2 possible mechanisms for controlling the neurons' excitability. These findings support the hypothesis that GABAB receptors are present in the spider mechanosensilla where their activation may modulate information transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.