Abstract

The effects of soluble and aggregated amyloid beta-peptide (Abeta) on cortical synaptic plasma membrane (SPM) structure were examined using small angle x-ray diffraction and fluorescence spectroscopy approaches. Electron density profiles generated from the x-ray diffraction data demonstrated that soluble and aggregated Abeta1-40 peptides associated with distinct regions of the SPM. The width of the SPM samples, including surface hydration, was 84 A at 10 degrees C. Following addition of soluble Abeta1-40, there was a broad increase in electron density in the SPM hydrocarbon core +/-0-15 A from the membrane center, and a reduction in hydrocarbon core width by 6 A. By contrast, aggregated Abeta1-40 contributed electron density to the phospholipid headgroup/hydrated surface of the SPM +/-24-37 A from the membrane center, concomitant with an increase in molecular volume in the hydrocarbon core. The SPM interactions observed for Abeta1-40 were reproduced in a brain lipid membrane system. In contrast to Abeta1-40, aggregated Abeta1-42 intercalated into the lipid bilayer hydrocarbon core +/-0-12 A from the membrane center. Fluorescence experiments showed that both soluble and aggregated Abeta1-40 significantly increased SPM bulk and protein annular fluidity. Physico-chemical interactions of Abeta with the neuronal membrane may contribute to mechanisms of neurotoxicity, independent of specific receptor binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.