Abstract
This work explores the distribution of water and its effects on molecular mobilities in poly(vinylpyrrolidone) (PVP) glasses using molecular dynamics (MD) simulation technology. PVP glasses containing 0.5% and 10% w/w water and a small amount of ammonia and Phe-Asn-Gly were generated. Physical aging processes and associated structural and dynamic properties were monitored vs. time for periods up to 0.1 micros by MD simulation. Increasing water content from 0.5% to 10% w/w was found to reduce the Tg by about 90 K and increase the rates of volume and enthalpy relaxation. At 0.5% w/w, water molecules are mostly isolated and uniformly distributed while at 10% w/w, water distribution is markedly heterogeneous, with strands of water molecules occupying channels between the polymer chains. At 10% w/w, each water molecule has an average of 2.0 neighboring water molecules. The plasticization effects of water were revealed in diffusion coefficient increases of 3.7-, 7.3-, and 7.6-fold for water, ammonia, and the individual polyvinylpyrrolidone segments, respectively, and in shorter relaxation times (37- to 47-fold) for rotation of polymer segments with an elevation in water content from 0.5% to 10% w/w. Water diffusivity was found to linearly correlate with the number of neighboring water molecules. Rotation of the PVP segments is comprised of a fast wobble motion within a highly restrained cavity and a slow rotation over a wider angular space. Only the slow rotation was shown to be significantly affected by water content. Water distribution in the PVP glass is highly heterogeneous at 10% w/w water, reflecting the formation of water strands or small clusters rather than complete phase separation. Local enhancement of mobility with increasing water content has been demonstrated using MD simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.