Abstract
The rapid development of modern society has resulted in discharge of large, heavy metal quantities into wetlands that have been continuously accumulating, causing severe pollution. Dajiuhu, located in the Shennongjia Forest District of Hubei Province in China, is a wetland of significant value internationally, serving as a model wetland ecosystem with heightened scientific research value. In this study, 27 surface sediment samples from nine sub-lakes in Dajiuhu were collected in August 2020. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the sediments were determined. The heavy metal occurrence and speciation characteristics were analyzed by an improved BCR (European Community Bureau of Reference) extraction method. Four methods were used to evaluate heavy metals' pollution degree and ecological risk. The possible source of heavy metals was inferred using correlation analysis and principal component analysis. The heavy metal content in the lake sediments of Dajiuhu wetland was from the highest to the lowest concentration as follows: Zn [Formula: see text] Cr [Formula: see text] Ni [Formula: see text] Pb [Formula: see text] Cu [Formula: see text] Cd. The average Cd content exceeded the national nature reserve threshold values, while the other heavy metals measured were below their respective threshold values. However, due to the occurrence of Pb and Cd in different forms, they still pose certain pollution and ecological risk to the lake wetlands. On the other hand, Zn, Cr, Ni, and Cu do not pose an ecological risk in the lakes of the Dajiuhu wetland. The spatial distribution of heavy metal content in the nine sub-lakes did vary significantly. Regarding the heavy metal sources in the lake sediments, Ni, Cr, and Cu originate from natural factors, and Cd and Pb have mainly anthropogenic origins. In contrast, Zn has both natural and anthropogenic origins. This study provides further insights into the study of heavy metal pollution in lake wetlands. It provides a framework and a direction for managing heavy metal pollution in the Dajiuhu wetland.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.