Abstract

Foaming caused by filamentous bacteria in activated sludge (AS) is a common phenomenon in municipal wastewater treatment plants (WWTPs) in Taihu Lake Basin of South China. In this study, total bacterial and filamentous bacterial communities were comprehensively characterized in AS and foams from eight municipal WWTPs by high-throughput sequencing technology. Results showed that alpha diversities of total bacterial communities in foams were obviously lower than those in AS samples. The bacterial community structures were significantly different between WWTPs rather than sample types (AS vs. foam). For most WWTPs, the Actinobacteria phylum was highly enriched in foams and the most abundant genera in foams were common mycolata. Sixteen filamentous bacteria were identified against the improved bulking and foaming bacteria (BFB) database. Abundance and composition of BFB in different WWTPs and different sample types were significantly different. ‘Nostocoida limicola’ I Trichococcus and Microthrix were generally dominant in AS samples. The dominant BFB in foams were associated with Microthrix, Skermania, Gordonia, and Mycobacterium. A new Defluviicoccus spp. in cluster III was identified in severe and continuous foams. Moreover, dominant BFB in stable and continuous foams with light level in one typical WWTP were diverse, even, and dynamic. Bacterial co-occurrence network analysis implied that the bacterial community of AS was more sensitive to disturbance than that of foam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.