Abstract
ABSTRACTCyanobacteria and eukaryotic algae are important primary producers in a variety of environments, yet their distribution and response to environmental change in saline lakes are poorly understood. In this study, the community structure of cyanobacteria and eukaryotic algae in the water and surface sediments of six lakes and one river on the Qinghai–Tibetan Plateau were investigated with the 23S rRNA gene pyrosequencing approach. Our results showed that salinity was the major factor controlling the algal community composition in these aquatic water bodies and the community structures of water and surface sediment samples grouped according to salinity. In subsaline–mesosaline lakes (salinity: 0.5–50 g L−1), Cyanobacteria (Cyanobium, Synechococcus) were highly abundant, while in hypersaline lakes (salinity: >50 g L−1) eukaryotic algae including Chlorophyta (Chlorella, Dunaliella), Bacillariophyta (Fistulifera), Streptophyta (Chara), and Dinophyceae (Kryptoperidinium foliaceum) were the major members of the community. The relative abundance ratio of cyanobacteria to eukaryotic algae was significantly correlated with salinity. The algae detected in Qinghai–Tibetan lakes exhibited a broader salinity range than previously known, which may be a result of a gradual adaptation to the slow evolution of these lakes. In addition, the algal community structure was similar between water and surface sediment of the same lake, suggesting that sediment algal community was derived from water column.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.