Abstract

A simulation model has been used to investigate the influence of animal (insect) distribution and dispersal among exhaustable resource units (food plants). Population size and stability were used as measures of success. The results showed that population size and stability are highest when egg batch size is as large as can be supported by the average food plant or slightly larger if larval dispersal occurs. Clumping of egg batches of food plants increases population stability when egg batches are small by insuring that some food plants will not be overcrowded. Increasing the proportion of larval dispersers or the success of dispersers can increase or decrease population size and stability depending on the original egg batch distribution, but individuals which produce offspring some of which disperse, generally have a selective advantage. Density dependent larval dispersal decreases population stability. Finally, individuals with lower reproductive capacities can have a selective advantage over those with higher reproductive capacities under certain conditions of egg batch size and larval dispersal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call