Abstract

Occupancy and density of the epiphytic lichen L. pulmonaria were studied in the mountains of Uholka–Shyrokyi Luh (Ukraine), which include the largest primeval beech forest in Europe. The lichen occupancy was assessed on 314 plots laid out on a systematic grid. Additional data on population density were collected from 483 trees growing both, on and between these plots. The trees harbouring L. pulmonaria were distributed very sparsely within Uholka–Shyrokyi Luh, and occupy nearly 10 % of the studied perimeter. The generalized linear models showed that area of occupancy of L. pulmonaria was significantly influenced by altitude and canopy cover, whereas the species’ density was explained by habitat types and slope exposition. Population density is higher at the timberline than in the interior forest or on lowland meadows. We found a bimodal altitudinal distribution of L. pulmonaria, with maxima below and above 900 m a.s.l., where it prefers forest stands with loose or scattered canopy. The preferred position of L. pulmonaria on host tree trunks depends on stand density and allows the species to get the necessary level of insolation also in shaded sites where it grows higher up on the trunk than in open stands. While L. pulmonaria occupied trees with various diameters, juvenile individuals are more frequent on small trees, but mature lichen individuals are predominantly found on trees of average or large sizes. Fertile individuals require specific environmental conditions, which are available at intermediate altitudes, related with sheltered light, and horizontal terraces on slopes with eastern exposition. In general, the primeval beech forest of Uholka–Shyrokyi Luh harbours a high percentage of juvenile thalli of L. pulmonaria, which lack vegetative propagules. Mature individuals have a low frequency of fruit bodies and reproduce mainly with vegetative diaspores. We interpret this as an indication of a currently growing population of L. pulmonaria within the area. We hypothesize that transboundary air pollution has decreased the lichens’ population frequency and density and has altered the ratio of developmental stages in L. pulmonaria during earlier decades.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call