Abstract
The distribution of 1731 retrotransposon-hybridizing sequences in the family Drosophilidae has been studied using a 1731 probe from Drosophila melanogaster. Squash blot and Southern blot analyses of 42 species reveal that the 1731 sequences are widespread within both the Sophophora and Drosophila subgenera and are also present in the genera Scaptomyza and Zaprionus. Hence the 1731 retrotransposon family appears to have a long evolutionary history in the Drosophilidae genome. Differences of hybridization signal intensity suggested that the 1731 sequence is well conserved only in the three species most closely related to D. melanogaster (D. simulans, D. mauritiana, and D. sechellia). A survey of insertion sites in numerous different populations of the previous four species by in situ hybridization to polytene chromosomes has shown in all cases both chromocentric hybridizations and a low number of sites (0-5) on the chromosomal arms. This number of sites is among the lowest observed in D. melanogaster and D. simulans when 1731 is compared with other retrotransposon families. In addition, we have observed species-specific patterns of the chromocentric hybridization signal, suggesting rapid modifications of the beta-heterochromatin components since the radiation of the melanogaster subgroup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.