Abstract

Impurity contamination in thin-film solar cells remains an uncertain risk due to the little-known impact of impurities on recombination. Building upon previous work, in which we intentionally contaminated lead halide perovskite (LHP) solar cells with iron, we further examine the distribution and charge state of iron-induced defects in LHP films using synchrotron-based X-ray techniques. X-ray absorption measurements suggest that iron-rich regions, which form among iron feedstock concentrations that exceed 100 ppm, most closely resemble the chemistry of Fe2O3. Iron distributed within the bulk may form a mix of Fe <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2+</sup> and Fe <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3+</sup> , the latter of which is not expected to be recombination active, potentially allowing LHPs to incorporate more iron than traditional semiconductors. X-ray beam induced current measurements show little correlation between the presence of iron-rich regions and charge collection, which further suggests low recombination activity at these sites. These results further elucidate the recombination behavior caused by iron incorporation in LHP films, revealing insight into how inhomogeneous incorporation of impurities may mitigate photovoltaic performance degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.