Abstract
The method called `rocking-curve imaging' (RCI) has recently been developed to visualize lattice imperfections in large crystals such as semiconductor wafers with high spatial resolution. The method is based on a combination of X-ray rocking-curve analysis and digital X-ray diffraction topography. In this article, an extension of the method is proposed by which dislocation densities in large-scale samples (semiconductor wafer crystals) can be quantified and their variation across the sample surface determined in an instrumentally simple way. Results from a nearly dislocation-free S-doped InP crystal and a semi-insulating GaAs are presented; both display a clearly non-random distribution of dislocations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.