Abstract

Let G be a graph of order n and 3≤t≤n/4 be an integer. Recently, Kaneko and Yoshimoto [J Combin Theory Ser B 81(1) (2001), 100–109] provided a sharp δ(G) condition such that for any set X of t vertices, G contains a hamiltonian cycle H so that the distance along H between any two vertices of X is at least n/2t. In this article, minimum degree and connectivity conditions are determined such that for any graph G of sufficiently large order n and for any set of t vertices X⊆V(G), there is a hamiltonian cycle H so that the distance along H between any two consecutive vertices of X is approximately n/t. Furthermore, the minimum degree threshold is determined for the existence of a hamiltonian cycle H such that the vertices of X appear in a prescribed order at approximately predetermined distances along H. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 28–45, 2012

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.