Abstract

We report experimental and theoretical studies of edge magnetoplasmon (EMP) transport in quantum Hall (QH) devices. We develop a model that allows us to calculate the transport coefficients of EMPs in QH devices with various geometries. In our model, a QH system is described as a chiral distributed-element (CDE) circuit, where the effects of Coulomb interaction are represented by an electrochemical capacitance distributed along unidirectional transmission lines. We measure the EMP transport coefficients through single- and coupled-edge channels, a quantum point contact, and single- and double-cavity structures. These measured transmission spectra can be reproduced well by simulations using the corresponding CDE circuits. By fitting the experimental results with the simulations, we deduce the circuit parameters that characterize the electrostatic environment around the edge channels in a realistic QH system. The observed gate-voltage dependences of the EMP transport properties in gate-defined structures are explained in terms of the gate tuning of the circuit parameters in CDE circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call