Abstract
With the development of modern technologies, it is possible to gather an extraordinarily large number of observations. Due to the storage or transmission burden, big data are usually scattered at multiple locations. It is difficult to transfer all of data to the central server for analysis. A distributed subdata selection method for big data linear regression model is proposed. Particularly, a two-step subsampling strategy with optimal subsampling probabilities and optimal allocation sizes is developed. The subsample-based estimator effectively approximates the ordinary least squares estimator from the full data. The convergence rate and asymptotic normality of the proposed estimator are established. Simulation studies and an illustrative example about airline data are provided to assess the performance of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.