Abstract

The authors proposed fiber-optic-based damage monitoring of carbon fiber reinforced plastic (CFRP) bolted joints. Optical fibers were embedded along bolt holes and strain change along the optical fiber induced by internal damage was measured by a Brillouin Optical Correlation Domain Analysis (BOCDA), which is a high spatial resolution distributed strain sensing system. This study began by investigating damage modes of CFRP bolted joints after bearing failure. Effective embedding positions of optical fibers were then proposed and their feasibility was evaluated by finite element analysis simulating the damage propagation in the bolted joint and consequent strain change. Finally, verification tests were conducted using specimens with embedded optical fibers at various positions. It was clearly shown that damage could be detected using residual strain due to fiber-microbuckling (kinking) damage or permanent deformation of neighboring plies. Furthermore, damage size and direction could be estimated from the change in the strain distribution. The system developed is quite useful for a first inspection of large-scale composite structures in aerospace applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.