Abstract

In this paper, we study the problem of distributed multi-agent optimization over a network, where each agent possesses a local cost function that is smooth and strongly convex. The global objective is to find a common solution that minimizes the average of all cost functions. Assuming agents only have access to unbiased estimates of the gradients of their local cost functions, we consider a distributed stochastic gradient tracking method (DSGT) and a gossip-like stochastic gradient tracking method (GSGT). We show that, in expectation, the iterates generated by each agent are attracted to a neighborhood of the optimal solution, where they accumulate exponentially fast (under a constant stepsize choice). Under DSGT, the limiting (expected) error bounds on the distance of the iterates from the optimal solution decrease with the network size $n$, which is a comparable performance to a centralized stochastic gradient algorithm. Moreover, we show that when the network is well-connected, GSGT incurs lower communication cost than DSGT while maintaining a similar computational cost. Numerical example further demonstrates the effectiveness of the proposed methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.