Abstract
Spectrum-Based Fault Localization (SFL) is a popular approach for diagnosing faulty systems. SFL algorithms are inherently centralized, where observations are collected and analyzed by a single diagnoser. Applying SFL to diagnose distributed systems is challenging, especially when communication is costly and there are privacy concerns. We propose two SFL-based algorithms that are designed for distributed systems: one for diagnosing a single faulty component and one for diagnosing multiple faults. We analyze these algorithms theoretically and empirically. Our analysis shows that the distributed SFL algorithms we developed output identical diagnoses to centralized SFL while preserving privacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.