Abstract

A novel distributed spatial media-based modulation scheme is proposed in this paper by cleverly utilizing distributed spatial modulation (DSM) and media-based modulation (MBM) principles. This proposed scheme is referred to as distributed channel modulation (DCM) for relay networks. In this scheme, decode-and-forward relaying protocol is adopted, and the channel states are exploited for transmitting extra information bits by using a number of radio frequency (RF) mirrors that are placed near each relay. To provide a fair comparison with the conventional state-of-the-art schemes, the symbol error rate (SER) performance of DSM scheme is evaluated. Besides, a low complexity detection technique known as iterative maximum ratio combining (i-MRC) is used in order to reduce the receiver complexity of the proposed scheme. Simulation results demonstrate that the proposed DCM scheme significantly outperforms DSM scheme for the same average rate. It is also shown that there is a negligible degradation in the SER performance of the proposed DCM scheme when i-MRC detection is used as compared to the performance with maximum likelihood (ML) detection. Furthermore, a significant reduction in the receiver complexity is achieved by using i-MRC detection technique in contrast to the results with ML detector. It has been also revealed that the proposed DCM scheme shows a performance drop of about 3 dB when the availability of an imperfect channel state information (CSI) is assumed with the presence of channel estimation errors (CEEs). Finally, simulation results have confirmed the analytical findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call