Abstract

In this paper, we consider transmission in relatively wide-stretched power line communication (PLC) networks, where repeaters are required to bridge the source-to-destination distance. In particular, it is assumed that each network node is a potential repeater and that multihop transmission is accomplished in an ad hoc fashion without the need for complex routing protocols. In such a scenario, due to the broadcasting nature of the power line channel, multiple repeater nodes may receive and retransmit the source message simultaneously. It is shown that, if no further signal processing is applied at the transmitter, simultaneous retransmission often deteriorates performance compared with single-node retransmission. We therefore advocate the application of distributed space-time block codes (DSTBCs) to the problem at hand. More specifically, we propose that each network node is assigned a unique signature sequence, which allows efficient combining at the receiver. Most notably, DSTBC-based retransmission does not require explicit collaboration among network nodes for multihop transmission and detection complexity is not increased compared with single-node retransmission. Numerical results for multihop transmission over PLC networks show that DSTBC-based retransmission achieves a considerably improved performance in terms of required transmit power and multihop delay compared with alternative retransmission strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.