Abstract

Shared energy storage is an energy storage business application model that integrates traditional energy storage technology with the sharing economy model. Under the moderate scale of investment in energy storage, every effort should be made to maximize the benefits of each main body. In this regard, this paper proposes a distributed shared energy storage double-layer optimal allocation method oriented to source-grid cooperative optimization. First, considering the regulation needs of the power side and the grid side, a distributed shared energy storage operation model is proposed. Second, a distributed shared energy storage double-layer planning model is constructed, with the lowest cost of the distributed shared energy storage system as the upper-layer objective, and the lowest daily integrated operation cost of the distribution grid-distributed new energy stations as the lower-layer objective. Third, a double-layer iterative particle swarm algorithm combined with tide calculation is used to solve the distributed shared energy storage configuration and distribution grid-distributed new energy stations’ economic operation problem. Finally, a comparative analysis of four scenarios verifies that configuring distributed shared energy storage can increase the new energy consumption rate to 100% and reduce the net load peak-valley difference by 61%. Meanwhile, distributed shared energy storage operators have realized positive returns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call