Abstract

The paper addresses the problem of distributed sensor fusion in the framework of random finite set. The Generalized Covariance Intersection (GCI) rule of multi-target densities is extensively used in multi-target Bayesian filtering scheme. But there are two problems in GCI which are unreasonable design of fusion weight and unable to tackle informative differentiation. In order to get rid of the bad influence of these two problems, we propose a heuristic Heuristic distributed fusion (HDF) method by two steps: fusion weight reconstruction and information difference preservation. Finally, we compare the GCI fusion with our proposed HDF method in two scenarios. The results show that HDF is more robust and can achieve better performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.