Abstract

Various computing and data resources on the Web are being enhanced with machine-interpretable semantic descriptions to facilitate better search, discovery and integration. This interconnected metadata constitutes the Semantic Web, whose volume can potentially grow the scale of the Web. Efficient management of Semantic Web data, expressed using the W3C's Resource Description Framework (RDF), is crucial for supporting new data-intensive, semantics-enabled applications. In this work, we study and compare two approaches to distributed RDF data management based on emerging cloud computing technologies and traditional relational database clustering technologies. In particular, we design distributed RDF data storage and querying schemes for HBase and MySQL Cluster and conduct an empirical comparison of these approaches on a cluster of commodity machines using datasets and queries from the Third Provenance Challenge and Lehigh University Benchmark. Our study reveals interesting patterns in query evaluation, shows that our algorithms are promising, and suggests that cloud computing has a great potential for scalable Semantic Web data management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.