Abstract

Frequency regulation in wind-powered islanded microgrids (WPIM) is critical for system stability given unpredictable dynamics from variations in wind generation and demand. Traditional methods of frequency regulation in WPIM have used classical secondary load controllers (CSLC) in a centralized approach to buffer wind generation and demand events. This study investigates the feasibility of using a network of self-sensing distributed secondary loads (SSDSL) consisting of electric-thermal storage (ETS) to assist in frequency regulation in WPIM. Individual SSDSL sense the local grid frequency and activate resistive load elements in order to absorb surplus energy during high wind events. Four major parameters: 1) zero-order hold time 2) full response point 3) network capacity ratio, and 4) coordination mode, are used in a dynamic model to explore the effect of SSDSL on frequency regulation. SSDSL are shown to assist with frequency regulation in WPIM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.