Abstract

We propose a distributed recognition method to classify human actions using a low-bandwidth wearable motion sensor network. Given a set of pre-segmented motion sequences as training examples, the algorithm simultaneously segments and classifies human actions, and it also rejects outlying actions that are not in the training set. The classification is distributedly operated on individual sensor nodes and a base station computer. We show that the distribution of multiple action classes satisfies a mixture subspace model, one sub-space for each action class. Given a new test sample, we seek the sparsest linear representation of the sample w.r.t. all training examples. We show that the dominant coefficients in the representation only correspond to the action class of the test sample, and hence its membership is encoded in the representation. We further provide fast linear solvers to compute such representation via l <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> -minimization. Using up to eight body sensors, the algorithm achieves state-of-the-art 98.8% accuracy on a set of 12 action categories. We further demonstrate that the recognition precision only decreases gracefully using smaller subsets of sensors, which validates the robustness of the distributed framework.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call