Abstract

Independent system operators (ISOs) of electricity markets solve the security-constrained unit commitment (SCUC) problem to plan a secure and economic generation schedule. However, as the size of power systems increases, the current centralized SCUC algorithm could face critical challenges ranging from modeling accuracy to calculation complexity. This paper presents a distributed SCUC (D-SCUC) algorithm to accelerate the generation scheduling of large-scale power systems. In this algorithm, a power system is decomposed into several scalable zones which are interconnected through tie lines. Each zone solves its own SCUC problem and a parallel calculation method is proposed to coordinate individual D-SCUC problems. Several power systems are studied to show the effectiveness of the proposed algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call