Abstract
This paper develops a fully distributed framework to investigate the cooperative behavior of multiagent systems in the presence of distributed denial-of-service (DoS) attacks launched by multiple adversaries. In such an insecure network environment, two kinds of communication schemes, that is, sample-data and event-triggered communication schemes, are discussed. Then, a fully distributed control protocol with strong robustness and high scalability is well designed. This protocol guarantees asymptotic consensus against distributed DoS attacks. In this paper, "fully" emphasizes that the eigenvalue information of the Laplacian matrix is not required in the design of both the control protocol and event conditions. For the event-triggered case, two effective dynamical event-triggered schemes are proposed, which are independent of any global information. Such event-triggered schemes do not exhibit Zeno behavior even in the insecure environment. Finally, a simulation example is provided to verify the effectiveness of theoretical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.