Abstract
The conventional hierarchical control in an islanded microgrid (MG) does not consider the long time-span dynamics of distributed storages (DSs). The main challenge in control of battery energy storage systems (BESSs) is different levels of stored energy in terms of state of charge (SoC). In power droop control, the energy of the BESSs with lower initial SoC is drained earlier, and their capacities become unachievable. Moreover, using droop control to balance the SoC of BESSs, deviates the steady state frequency and voltage from the nominal values. However, restoration of the MG frequency employing the conventional distributed secondary controllers disturbs SoC-balancing, since SoC of BESSs are ignored. In this paper, a new distributed storage secondary controller (DSSC) scheme is designed for restoration of the voltage and frequency of a stand-alone MG, and to provide power-sharing and SoC-balancing, using a distributed cooperative architecture. The cooperative DSs are controllable and exchange the information with neighbor DSs through a communication network. The unknown output power of the uncooperative renewable distributed generation (DG) is considered as external disturbance to the DSSC. The designed DSSC is robust against the variation of the communication configuration, and eliminates the necessity to communicate with uncontrollable DGs and loads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.